A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow
نویسندگان
چکیده
Jagdev Singh 1,*, Devendra Kumar 2 and Juan J. Nieto 3,4 1 Department of Mathematics, Jagan Nath University, Jaipur 303901, India 2 Department of Mathematics, JECRC University, Jaipur 303905, India; [email protected] 3 Departamento de Análise Matemática, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; [email protected] 4 Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia * Correspondence: [email protected]; Tel.: +91-946-090-5224
منابع مشابه
A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کاملOn a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics
In this paper, based on fixed entropy, the adiabatic equation of state in fractal flow is discussed. The local fractional wave equation for the velocity potential is also obtained by using the non-differential perturbations for the pressure and density of fractal hydrodynamics.
متن کاملVanishing Viscosity Method for Transonic Flow
A vanishing viscosity method is formulated for two-dimensional transonic steady irrotational compressible fluid flows with adiabatic constant γ ∈ [1, 3). This formulation allows a family of invariant regions in the phase plane for the corresponding viscous problem, which implies an upper bound uniformly away from cavitation for the viscous approximate velocity fields. Mathematical entropy pairs...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016